The forthcoming R Journal has an interesting article about phaseR: An R Package for Phase Plane Analysis of Autonomous ODE Systems by Michael J. Grayling. The package has some nice functions to analysis one and two dimensional dynamical systems. As an example I use here the FitzHugh-Nagumo system introduced earlier: $$ \begin{align} \dot{v}=&2 (w + v - \frac{1}{3}v^3) + I_0

\dot{w}=&\frac{1}{2}(1 - v - w)

\end{align} $$ The FitzHugh-Nagumo system is a simplification of the Hodgkin-Huxley model of spike generation in squid giant axon.

\dot{w}=&\frac{1}{2}(1 - v - w)

\end{align} $$ The FitzHugh-Nagumo system is a simplification of the Hodgkin-Huxley model of spike generation in squid giant axon.

One of the great research papers of the 20th century celebrates its 60th anniversary in a few weeks time: A quantitative description of membrane current and its application to conduction and excitation in nerve by Alan Hodgkin and Andrew Huxley. Only shortly after Andrew Huxley died, 30th May 2012, aged 94.
In 1952 Hodgkin and Huxley published a series of papers, describing the basic processes underlying the nervous mechanisms of control and the communication between nerve cells, for which they received the Nobel prize in physiology and medicine, together with John Eccles in 1963.

This is a personal weblog. All data and information provided on this site
is for informational purposes only.

The opinions expressed here represent
my own - some of them change over time.

© Markus Gesmann CC BY-NC-SA 3.0 ·
Powered by the Academic
theme for Hugo.