Hodgkin-Huxley

Simulating neurons or how to solve delay differential equations in R

I discussed earlier how the action potential of a neuron can be modelled via the Hodgkin-Huxely equations. Here I will present a simple model that describes how action potentials can be generated and propagated across neurons. The tricky bit here is that I use delay differential equations (DDE) to take into account the propagation time of the signal across the network. My model is based on the paper: Epileptiform activity in a neocortical network: a mathematical model by F.

Hodgkin-Huxley model in R

One of the great research papers of the 20th century celebrates its 60th anniversary in a few weeks time: A quantitative description of membrane current and its application to conduction and excitation in nerve by Alan Hodgkin and Andrew Huxley. Only shortly after Andrew Huxley died, 30th May 2012, aged 94. In 1952 Hodgkin and Huxley published a series of papers, describing the basic processes underlying the nervous mechanisms of control and the communication between nerve cells, for which they received the Nobel prize in physiology and medicine, together with John Eccles in 1963.