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WHAT IS THIS FOR?



DATA AND THOUGHTS

Distinguish between
- Data
- What we think about the data

p(H) p(D|H)

WHAT WE THINK 
ABOUT THE DATA

DATA



INDIVIDUAL MODEL: STATIC

Model data using known root causes

Identify root causes driving data

p(H) p(D|H)

WHAT WE THINK 
ABOUT THE DATA

DATA



INDIVIDUAL MODEL: DYNAMIC

Model data using known root causes

Identify root causes driving data

Track behaviour dynamically through time

Make predictions about the future

Better understand the past



INDIVIDUAL MODEL: HIERARCHICAL

Model data using known root causes

Identify root causes driving data

Track behaviour dynamically through time

Make predictions about the future

Better understand the past

Use hierarchies to share inferences



SYSTEMS OF MODELS

Model data using known root causes

Identify root causes driving data

Track behaviour dynamically through time

Make predictions about the future

Better understand the past

Connect models together into a system

?

?



DO THINGS!

Model data using known root causes

Identify root causes driving data

Track behaviour dynamically through time

Make predictions about the future

Better understand the past

Connect models together into a system

Enable the system to act

?

?

NOT IN SCOPE



APPLICATIONS

Organisations
- Commerce
- Finance
- Governments
- Defence

?

?



PARALLELS

Organisms
- Individual organisms
- Ecosystems

?

?



MANIFESTO

✓ Localised information sources
✓ Localised inference
✓ Efficient sharing of inferences
✓ Global consistency of inferences
✓ Automated calibration
✓ Scenario analysis
✓ Prediction

✓ Time efficiency
✓ Robustness
✓ Scalability

✓ Bayesian inferences
✓ Message-passing
✓ On a graph



CONSTRUCTING
A GRAPH



A NODE

A node represents a probability distribution

p(A)



A NODE

A node represents a probability distribution
- Probability is a non-negative real value
- Assigned to outcomes of an event

Sum rule
- add up probabilities of mutually exclusive outcomes
- Probabilities of partition sum to one

Probability distributions can be
- Parametric or non-parametric
- Discrete or continuous
- Univariate, multivariate, process

p(Result)

0.3 0.2

Win Draw

0.5

Lose

Event  Result of match
Outcome space {Win, Draw, Lose}



A NODE

A node represents a probability distribution
- Probability is a non-negative real value

Sum rule
- add up probabilities of mutually exclusive outcomes
- Probabilities of partition sum to one

Probability distributions can be
- Parametric or non-parametric
- Discrete or continuous
- Univariate, multivariate, process

A node can represent an observed value
- p(Observed value) = 1
- Node is “clamped”
- Represent by shading in the node

p(Result = Win) = 1

A win!



AN EDGE

An edge represents conditioning

The table represents joint probabilities
- p(A, B)
- p(Home, Win) = 0.2

Marginal probabilities
- p(Win) = p(Win, Home) + p(Win, Away) = 0.3

Conditional probabilities
- p(B | A) = p(B, A) / p(A)
- P(Win | Home) = p(Win, Home) / p(Home)
                                      = 0.2 / 0.5
                                      = 0.4

p(A) p(B | A)

WIN DRAW LOSE

HOME 0.2 0.1 0.2 0.5

AWAY 0.1 0.1 0.3 0.5

0.3 0.2 0.5

B

A



A GRAPH

Conditional probability p(B|A) = p(B, A) / p(A)

Rearrange  p(B, A) = p(A) x p(B|A)

Product Law
- Multiply conditionally independent distributions
- Independence  p(B, A) = p(A) x p(B)

The graph
- Represents the joint distribution
- In factorised form
- Exploiting conditional independence relationships

Manage complexity
- Factorise the problem into many small problems

p(A) p(B | A)

CORE IDEA!



FAMILIAR MODELS 
IN GRAPH FORM



TRUST MODEL

A hypothesis H is an idea or potential explanation.

I want to know if I should trust a particular person. My 
hypotheses are YES or NO.

I use Bayes’ Law to update my degrees of belief in those 
hypotheses according to how I observe that person 
behaving.

Prior distribution:  p(H)
Likelihood distribution: p(D | H)
Posterior distribution: p(H | D)

p(H) p(D|H)

Prior degree of belief in 
each hypothesis

Likelihood distribution 
for each hypothesis



MIXTURE MODEL

Discrete mixture of Gaussians, Poissons, …

P(C, y) = Disc(C_1, … C_K) Normal(y_n|Mean_k, Cov_k) 

Remarks
1. A cluster is a hypothesis about the data
2. A prior is a mixing weight (and vice versa)
3. MoG is like a Taylor series for distributions
4. Continuous mixtures also useful e.g. Gamma 

mixture of Gaussians is (a type of) Student T
5. Stochastic Volatility models (Heston etc)

p(C) p(y|C)

Discrete distribution 
over K clusters

Likelihood distributions 
conditioned on clusters



MIXTURE MODEL

Discrete mixture of Gaussians, Poissons, …

P(C, y) = Disc(C_1, … C_K) Normal(y_n|Mean_k, Cov_k) 

p(y|C)

Discrete distribution 
over K clusters

Likelihood distributions 
conditioned on clusters



BAYESIAN REGRESSION

Supervised learning

P(w, y) = Normal(w|0, alpha x I) Normal(y|Xw, Variance) 

X is the (fixed) design matrix
- Each column represents a hypothesis
- Hypotheses populated using basis functions

p(w) p(y|w)

Isotropic Gaussian 
latent

Gaussian likelihood / 
emission density



FACTOR ANALYSIS

Unsupervised learning

P(z, x) = Normal(z|0, I) Normal(y|Az + m, Cov)

 

Factor analysis is a regression model with
• Emission matrix A instead of Design Matrix X
• Offset vector m
• Both learned from the data

p(z) p(y|z)

Isotropic Gaussian 
latent

Gaussian likelihood / 
emission density



GENERATIVE
MODELLING



GENERATIVE MODELLING

Generate synthetic data by sampling from graph

p(C)

Discrete distribution 
over K clusters

Likelihood distributions 
conditioned on clusters

p(y|C)



GENERATIVE MODELLING

Generate synthetic data by sampling from graph

1. Sample from prior

➢ Randomly selects a cluster

p(C)

Discrete distribution 
over K clusters

Likelihood distributions 
conditioned on clusters

p(y|C)



GENERATIVE MODELLING

Generate synthetic data by sampling from graph

1. Sample from prior
2. Use sample from prior to sample from likelihood

➢ Sample from Gaussian from the selected cluster

p(C)

Discrete distribution 
over K clusters

Likelihood distributions 
conditioned on clusters

p(y|C)



GENERATIVE MODELLING

Generate synthetic data by sampling

1. Sample from prior
2. Use sample from prior to sample from likelihood

p(C)

Discrete distribution 
over K clusters

Likelihood distributions 
conditioned on clusters

p(y|C)



GENERATIVE MODELLING

Generate synthetic data by sampling from graph

1. Sample from prior
2. Use sample from prior to sample from likelihood

In general
1. Sample from parents
2. Pass samples to children
3. Continue through the graph

Ancestral Sampling

p(C)

Discrete distribution 
over K clusters

Likelihood distributions 
conditioned on clusters

p(y|C)



MARKOV CHAIN



MESSAGE PASSING

Markov chain:

C is conditionally independent of A, given B
- Modelling decision
- Other factorisations are available

p(A) p(B|A) p(C|B)



Markov chain:

C is conditionally independent of A, given B

Message passing

p(A) p(B|A) p(C|B)

Pass p(A) forwards

MESSAGE PASSING



Markov chain:

C is conditionally independent of A, given B

Message passing

p(A) p(B|A) p(C|B)

Marginalise
Pass p(B) forwards

MESSAGE PASSING



Markov chain:

C is conditionally independent of A, given B

Message passing

p(A) p(B|A) p(C|B)

Marginalise
Obtain p(C)

MESSAGE PASSING



Summary
1. Summarise inferences at a node: marginalisation
2. Pass marginal distribution forwards as a message

Architecture
1. Allows inferences to be made locally
2. Allows inferences to be shared across the graph
3. Can implement as distributed architecture

Note use of message passing in Kafka, Spark, etc

p(A) p(B|A) p(C|B)

MESSAGE PASSING



INFERENCE
THROUGH 
TIME



TWO NODE MODEL

H Latent variable; degrees of belief in hypotheses
D Observed data

Examples
- Mixture model
- Factor analysis
- Bayesian regression
- Compound distributions p(H) p(D|H)

Prior degree of belief in 
each hypothesis

Likelihood distribution 
for each hypothesis



TWO NODE MODEL

H Latent variable; degrees of belief in hypotheses
D Observed data

Examples
- Mixture model
- Factor analysis
- Bayesian regression
- Compound distributions p(H)

p(D|H)



TWO NODE MODEL THROUGH TIME

H Latent variable; degrees of belief in hypotheses
D Observed data

Examples
- Mixture model
- Factor analysis
- Bayesian regression
- Compound distributions p(H1) p(H2) p(H3) p(H4)



TWO NODE MODEL THROUGH TIME

H Latent variable; degrees of belief in hypotheses
D Observed data

Markov chain
- Latent variables Hn
- H discrete: Hidden Markov Model
- H continuous: filter (e.g. Kalman Filter)

p(H1) p(H2) p(H3) p(H4)



TWO NODE MODEL THROUGH TIME

H Latent variable; degrees of belief in hypotheses
D Observed data

Specify three densities:

Prior  p(H1)
Emission  p(Dn|Hn)
Transition p(Hn+1|Hn) p(H1) p(H2) p(H3) p(H4)



FORWARD RECURSIONS

H Latent variable; degrees of belief in hypotheses
D Observed data

Initialise with prior p(H1)

p(H1) p(H2) p(H3) p(H4)



FORWARD RECURSIONS

H Latent variable; degrees of belief in hypotheses
D Observed data

Initialise with prior p(H1)

Bayesian update from D1, first data point

 p(H1|D1) = p(D1|H1)p(H1) / p(D1)



FORWARD RECURSIONS

H Latent variable; degrees of belief in hypotheses
D Observed data

Initialise with prior p(H1)

Bayesian update from D1, first data point

 p(H1|D1) = p(D1|H1)p(H1) / p(D1)

Marginalise and push forward to create prior p(H2|D1)



FORWARD RECURSIONS

H Latent variable; degrees of belief in hypotheses
D Observed data

 
 Bayesian update from data



FORWARD RECURSIONS

H Latent variable; degrees of belief in hypotheses
D Observed data

 
 Marginalise and push forwards



FORWARD RECURSIONS

H Latent variable; degrees of belief in hypotheses
D Observed data

 
 Bayesian update from data



FORWARD RECURSIONS

H Latent variable; degrees of belief in hypotheses
D Observed data

 
 Marginalise and push forwards



FORWARD RECURSIONS

H Latent variable; degrees of belief in hypotheses
D Observed data

 
 Bayesian update from data



FORWARD RECURSIONS

Have updated final latent variable with all data

The FILTERING problem
- Estimate current state

Many such models
- Aeronautics
- Algorithmic trading



PREDICTION

Have updated final latent variable with all data

The FILTERING problem
- Estimate current state

The PREDICTION problem

?

?



PREDICTION

Have updated final latent variable with all data

The FILTERING problem
- Estimate current state

The PREDICTION problem
1. Marginalise and push forwards

?



PREDICTION

Have updated final latent variable with all data

The FILTERING problem
- Estimate current state

The PREDICTION problem
1. Marginalise and push forwards
2. Marginalise again to obtain predictive density



BACKWARD RECURSIONS

Have updated final latent variable with all data

The FILTERING problem
- Estimate current state

The PREDICTION problem
1. Marginalise and push forwards
2. Marginalise again to obtain predictive density

The SMOOTHING problem
1. What do we think now about what happened?
2. Backwards recursions: Rauch Tung Striebel
3. Each latent node incorporates every data observation



THE
EXPECTATION
MAXIMISATION
ALGORITHM



FITTING THE MODEL

Frequentist models:
- Maximise likelihood

Bayesian models:
- Have parameters
- And latent variables
- Marginalise out the latent variables
- Maximise marginal likelihood

✓ Same principle
➢ Hard to do

Find the parameter values 
and latent variable values 

that maximise marginal 
likelihood

Find the parameter values 
that maximise likelihood



DECOMPOSITION
Proposition 1 – note that Y does not depend on Z

Proposition 2 – product rule, take logs, rearrange

Let’s go!

We obtain these two terms

Substitute Proposition 2 into Proposition 1

Add and subtract log q(Z)

Rearrange the log q(Z) terms

Which we will now use

The strategy for decomposing the log marginal 
likelihood is interesting (to me, at least) because it 
involves some manoeuvres whose purpose is not 
initially obvious. The version on this slide is based on 
the presentation in Bishop 2006.



ITERATIVE ALGORITHM

E Step: INFERENCE

- Hold parameters fixed
- Obtain distribution q that minimises the KL divergence 

to the true posterior distribution, p
- This is exact for some models (Mixture of Gaussians, 

Linear Gaussian)
- If not exact, we can choose a sensible proposal 

distribution q

M Step: LEARNING

- Hold proposal distribution q fixed
- Obtain parameter values that maximise L(q, Theta)

Corresponds to rational thought
Having seen the data, what do I think now?

Re-calibration of the model
Dreams?
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