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Introduction
The central nervous system of animals and human beings is without doubt one
of the most fascinating organism. Although many highly specialized types of
neurons exist the layout is always the same: soma, axon, and dendrites with
synaptic connections, see figure below.

This work presents a flexible and efficient modelling framework for:

• large populations with arbitrary geometry

•different synaptic connections with individual dynamic characteristics

• cell specific axonal dynamics
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Axonal Dynamics
Say we have i = 1, . . . ,m neurons. The action potenial of neuron i can be
described in the following form (e.g. Hodgkin-Huxley):

v̇i(t) = Φi(vi(t),wi(t)) + ui(t)

ẇi(t) = Ψi(vi(t),wi(t))
(1)

vi(t) ∈ R is the membrane potential at the axon initial segment, while
wi(t) ∈ Rd (d ∈ N) describes auxiliary variables and ui(t) is the total post-
synaptic potential.

Net Dynamics
The total post-synaptic potential ui is the sum of the the incoming post-
synaptic signals uijk

ui(t) =
m∑
k=1

nik∑
j=1

δijk uijk(t− T δijk) i = 1, . . . ,m (2)

nik is the number of synapses between neuron i and neuron k.
δijk is a dendritic signal easing factor.
T δijk describes the time delay for the signal propogation along the dendrite.

Synaptic Dynamics
The post-synaptic potential uijk of neuron i generated by the pre-synaptic
neuron k at the synapse j is modeled as:

uijk(t) =
∫ t

−∞
qijk hijk(t− t′) gijk(vk(t

′ − (T αijk + T σijk))) dt
′ (3)

uijk(t) is the post-synaptic potential.
qijk represents the strength of the synaptic connection, the sign of qijk decides

if the synapse is excitatory (+) or inhibitory (−).
hijk(t) is an appropriate temporal weighting function modelling the dynamic

membran properties.
gijk is a monotonically increasing, nonnegative, and bounded function which

describes the transduction between the pre- and postsynaptic potential.
T αijk, T

σ
ijk are time delays modelling the signal propagation along the axon and

synapse respectively.

Example
The model presented here has been used successfully by several authors for
neural nets of small and large population, see [2, 3, 5, 1].

Here we present the case of a synchronized population of inhibitory cells1:

u̇(t) =α(−u(t) + qg(v(t− T )) + u0)

v̇(t) =w(t)− ϕ(v) + u(t)

ẇ(t) =ψ(v(t))− w(t)

(4)

We study three different aspects:

• the influence of the time constant α

• the time delay T

• the choice of the oscillator for the axonal dynamics

Oscillator
The model (1-3) and (4) allows to study different oscillators, e.g. the ones
from FitzHugh-Nagumo2 (left below) and Pernarowski3 [4] (right below) with
different dynamic characteristics.
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Influence of the time delay
Time delay changes the frequency
The parameter of the time constant α and the time delay T have an influence
on bursting frequency and the action potential threshold.
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Time delay enables bursting
The following artificial example with the Pernarowski oscillator shows that burst
can be generate even if α > 1, if a time delay T > 0 is introduced.
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1n = m = 1, δ = 1, h(t) = αe−αt for t ≥ 0, 0 otherwise, g(v) = 1

1+exp(−4v), u0 is the resting cell potential
2ϕ cubic, ψ linear
3ϕ and ψ cubic


