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The compartmental reserving modelling framework

• Key idea: Start by fitting model to data, not data to model

• At the centre of the framework is to think about the data generating process

– Begin by simulating artificial data that shares the expected real data characteristics 

• Use “compartments” to reflect different business processes

– Exposure being underwritten

– Claims being reported

– Payments being made



The compartmental reserving modelling framework

• Expert knowledge required to model and parameterise

– A Framework not a Method!

• Benefits:

– Transparent model that can be criticised

– Provides additional insight into business processes  

– Practitioner knowledge can be incorporated into model easily 



Relation to other models / frameworks



Hierarchical compartmental reserving models in a 

nutshell

• Use differential equations to model the mean claims process through time

• Consider which data generating distribution gave rise to the mean process, 

e.g. Gaussian, Log-normal, Negative-binomial, Tweedie

– Which variance metric can be considered constant across claims development 

periods, if any?  E.g. coefficient of variation

• Use expert knowledge to set priors on parameters

• Generate data from model: do simulations capture expected features?

• Update model with actual observations to obtain posterior parameter 

estimates and predictive distributions
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Compartmental models

• Popular tool in multiple disciplines to describe the behaviour and dynamics 

of interacting processes using differential equations

• Each compartment relates to a different stage or population of the process, 

usually modelled with its own differential equation

• Examples are found in: 
– Pharma, to model how drugs interact with the body

– Electric engineering, to describe the flow of electricity

– Biophysics, to explain the interactions of neurons

– Epidemiology, to understand the spread of diseases

– Biology, to describe interaction of different populations



Simple Compartmental 

claims development model



Analytical solutions can be derived by iterative 

integration

Solutions Define Development Patterns



Compartmental model with 

two claims settlement 

processes

Single rate of settlement can be too simplistic to 

capture heterogeneous claims characteristics and 

hence settlement processes at an aggregated level



Analytical solutions illustrate different processes



Compartment models can be extended easily ...

• To incorporate different claims processes, e.g. a faster and slower 

settlement process

• Separate earning and reporting processes

• Time dependent parameters

• Calendar year effects

• Analytical solutions may become complex, but can opt for ODE solvers  

• Note: Paid claims are scaled integration of outstanding claims
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Be careful with your parameter bookkeeping

• In a Bayesian framework we distinguish between:

– Priors, before we have actual data:

• Prior parameter distribution, e.g. Planning Loss Ratio (PLR)

• Prior predictive distribution, e.g. Capital Model Loss Ratio (CLR)

– Posteriors, priors updated with actual data:

• Posterior parameter distribution, e.g. Expected Loss Ratio (ELR)

• Posterior predictive distribution, e.g. Ultimate Loss Ratio (ULR)



Which process variance metric can be kept constant?

• Modelling cumulative paid data directly is problematic

• Modelling incremental paid with constant CoV more realistic

Simulated Behaviour: Cumulative vs. Incremental Model



Parameter Uncertainty + Data Generating Process

• “Which parameters combinations are consistent with our data and model?”

– Start with prior assumptions, e.g. ULR ~ logN(𝜇,𝜎), ...

– Update prior assumptions via the likelihood, L(y; ULR, ...)

– Obtain ‘posterior’ parameter distributions, p(ULR, ...|y)

• From posterior ELR to posterior ULR:

1. Simulate realisations from posterior parameter distributions

2. Simulate realisations from assumed data generation distribution

3. Sum future paid increment posterior predictive paths 



‘Borrow Strength’ with Hierarchies

• Which parameters vary across different cohorts, e.g. accident years and 

which are more likely to be fixed?

– Chain-ladder assumption: shape of curves considered fixed across accident years

– Ultimate loss ratios vary by accident years

• Hierarchical models allow all parameters to vary across cohort

– A parameter has greater potential to deviate from the ‘cohort average’ parameter 

value where data are rich (credibility weighting / shrinkage)

– Hierarchical priors are used to prevent overfitting (regularization)
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Example data set: Cumulative paid and incurred

Full 10 year history 

for accident years 

1988 - 1997



Example data set: Incremental paid and outstanding

Training triangles 

for accident years 

1988 - 1997



Model process and location parameter

• Let t be the development period

• y(t, 𝛿) describing paid (𝛿 = 1) and outstanding claims (𝛿 = 0)

• Assume process follows a log-normal distribution, with constant CoV𝛿

• We model the median of the claims process as:



Setup analytical solution in Stan/C

myFuns <- "

real paid(real t, real ker, real kp, real RLR, real RRF){

return(RLR*RRF/(ker - kp) * (ker *(1 - exp(-kp*t)) - kp*(1 - exp(-ker*t))));

}

real os(real t, real ker, real kp, real RLR){

return((RLR*ker/(ker - kp) * (exp(-kp*t) - exp(-ker*t))));

}



Setup analytical solution in Stan/C cont’d

real claimsprocess(real t, real devfreq, real oker, real okp, 

real oRLR, real oRRF, real delta){

real out; 

real ker = 1 + exp(oker); real kp = 1 * exp(okp * 0.5);

real RLR = 0.7 * exp(oRLR * 0.1); real RRF = exp(oRLR * 0.1);

out = os(t, ker, kp, RLR) * (1 - delta) + paid(t, ker, kp, RLR, RRF) * delta;

if( (delta > 0) && (t > devfreq) ){ // paid greater dev period 1

out = out - paid(t - devfreq, ker, kp, RLR, RRF)*delta;

}

return(out);

}"



Parameter structures

• Parameters assumed ‘fixed’ across accident years 
–

• Parameters assumed to vary ‘randomly’ by accident year

– , allowing for correlation: 

with                     following a log-normal distribution



Create non-linear model formula in R

frml <- bf(loss_train ~ log(claimsprocess(dev_year, 1.0, oker, okp,

oRLR, oRRF, delta)),

oRLR ~ 1 + (1 |ID| origin_year),

oRRF ~ 1 + (1 |ID| origin_year),

oker ~ 1, okp ~ 1, 

sigma ~ 0 + deltaf,

nl = TRUE)



Set prior parameter distributions

• Setting sensible priors is crucial for MCMC simulations

• Using standard Gaussians seems to be advisable 

– Standard Gaussian can be transformed to appropriate value ranges

• Example: 

– original oRLR ~ N(0,1)

– Transformed RLR = 0.7 * exp(oRLR * 0.1), i.e. log-normal distribution



Set prior distribution over parameters

mypriors <- c(prior(normal(0, 1), nlpar = "oRLR"),

prior(normal(0, 1), nlpar = "oRRF"),

prior(normal(0, 1), nlpar = "oker"),

prior(normal(0, 1), nlpar = "okp"),

prior(normal(-3, 0.2), class = "b", 

coef="deltafpaid", dpar= "sigma"),

prior(normal(-3, 0.2), class = "b", 

coef="deltafos", dpar= "sigma"),

prior(student_t(10, 0, 0.1), class = "sd", nlpar = "oRLR"),

prior(student_t(10, 0, 0.05), class = "sd", nlpar = "oRRF"))



Run prior predictive model with ‘brms’ in R/Stan

b1a <- brm(frml, data = myDat, 

family = brmsfamily("lognormal", link_sigma = "log"),

prior = mypriors,

control = list(adapt_delta = 0.9, max_treedepth=15),

file="models/CaliforniaGasLogNormalIncrPriorCGCana",

stanvars = stanvar(scode = myFuns, block = "functions"),

sample_prior = "only", seed = 123, iter = 200, chains = 2)



Review prior predictive output



Run model with actual data 

b1afit <- update(b1a, newdata=modDT_b[!is.na(loss_train)], 

file="models/CaliforniaGasLogNormalIncrPosterior1CGCana",

sample_prior="no", seed=123, iter=500)



Outstanding data with holdouts



Paid data with holdouts



Cumulative Paid data with holdouts 



Distribution of future payments 



Distribution of future payments 

From 500 samples:

Min.    151,776

1st Qu. 174,634

Median  183,273

Mean    184,184

3rd Qu. 191,748

Max.    236,694
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Summary

• Compartmental reserving models offer:

– A flexible and transparent framework to develop parametric non-linear curves to 

describe development of outstanding and paid claims, simultaneously 

– Insight for a variety of small data sizes, as industry data and expert judgement can 

naturally be incorporated

– Intuitive and transferable claims process-linked outputs, e.g. business plan LRs

• Bayesian modelling framework offers flexible approach to model process 

and parameter distribution

– Expert judgement required to set prior assumptions and review model output

– Paid development should be modelled on an incremental basis
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